1. Каталог >
  2. Cell Applications >
  3. Клеточные линии >
  4. По тканям (клеточные линии) >
  5. Кожа: клетки >

Меланоциты эпидермиса человека: HEM. Первичные клеточные линии Cell Applications.

Human Epidermal Melanocytes: HEM

HEM

Меланоциты Эпидермиса Человека (HEM) от Cell Applications, Inc. сохраняют свою характерную форму в культуре в течение многих поколений. Они продуцируют меланин и служат как удобная клеточная модель для исследования размножения и дифференциации меланоцитов, а также развития меланоцитарной неоплазии. Эпидермальные меланоциты – это вырабатывающие пигмент клетки, расположенные на базальном уровне эпидермиса, где они взаимодействуют с кератиноцитами через клеточные отростки, называемые дендритами. Меланин, пигмент, вырабатываемый меланоцитами и отвечающий за цвет кожи, передается в кератиноциты, где он хранится в пузырьках, называемых меланосомы, расположенные вокруг ядра для обеспечения защиты от УФ излучения.

HEM от Cell Applications, Inc. использовались для:

(Текст на языке оригинала)
  • Identify unique features and biomarkers of melanoma cells
  • Show that IGFBP7 is dispensable for B-RAFV600E-induced senescence
  • Investigate mechanisms of cellular senescence, in particular by showing that Id1 extends the life span of melanocytes through inhibition of p16/INK4a expression
  • Discover the central role of oncogenic BRAF gene in melanoma oncogenesis by demonstrating that the constitutive MAPK pathway activation leading to activation of mTOR, STAT3-dependent transcription of Mcl-1, Tbx3-mediated repression of E-cadherin leading to increased metastasis in melanoma cells all result from overexpression and/or mutations of BRAF gene
  • Discover other key players in oncogenic signaling leading to melanoma, such as PI3K which regulates MAPK activation in response to oncogenic c-Kit activity, Nck2 adaptor protein which participates in regulation of tyrosine kinases activity and the role of mitochondria metabolism in advanced melanoma
  • Demonstrate that p16INK4a-Rb-CDK4/6 senescence-inducing tumor suppressor pathway in inhibited in melanoma cells leading to proliferation of cells harboring DNA damage and by studying expression of senescence markers

НазваниеКодЦена
HEM Total Kit: Media, Subculture Reagents & Cells, Adult 104K-05a 72880.16 руб. 1 Kit
HEM Total Kit: Media, Subculture Reagents & Cells, Neonatal 104K-05n 69313.96 руб. 1 Kit



НазваниеКодЦена
Cryopreserved HEM 104-05a 56473.69 руб. 1 Ampoule



НазваниеКодЦена
Cryopreserved HEM 104-05n 52906.85 руб. 1 Ampoule



НазваниеКодЦена
Proliferating HEM 105-25a 56473.69 руб. T-25 Flask
Proliferating HEM 105-75a 79062.65 руб. T-75 Flask
Proliferating HEM 105-6Wa 79062.65 руб. 6 well
Proliferating HEM 105-96Wa 93329.4 руб. 96 well



НазваниеКодЦена
Proliferating HEM 105-6Wn 75495.81 руб. 6 well
Proliferating HEM 105-96Wn 89763.2 руб. 96 well
Proliferating HEM 105-25n 52906.85 руб. T-25 Flask
Proliferating HEM 105-75n 75495.81 руб. T-75 Flask







Extended Family Products

НазваниеКодЦена
100 tests 028-S 3963.02 руб. Sample
500 tests 028-01 15337.25 руб. 1 bottle



НазваниеКодЦена
Human Epidermal Growth Factor RP1026-100 9511.38 руб. 100 ug
Human Epidermal Growth Factor RP1026-500 21400.44 руб. 500 ug
Human Epidermal Growth Factor RP1026-1000 29128.07 руб. 1000 ug



НазваниеКодЦена
25 ug 104-R25n 77279.55 руб. 25 ug
Total RNA prepared from HEM 104-R10n 38639.45 руб. 10 ug



НазваниеКодЦена
100 ml each of HBSS, Trypsin/EDTA & Trypsin Neutralizing Solution 090K 6063.19 руб. 100 ml



Related Products

НазваниеКодЦена
Basal medium (contains no growth supplement).В  Add GS before use. 134-500 6301.15 руб. 500 ml



НазваниеКодЦена
Freezing Medium optimized for the unique needs of Human Epidermal Melanocytes (HEM). 040-50HEM 7133.7 руб. 50 ml



НазваниеКодЦена
All-in-one ready-to-use 135-500 11532.44 руб. 500 ml



НазваниеКодЦена
Basal medium & growth supplement sold together packaged separately 135K-500 12483.65 руб. Yields 500 ml



НазваниеКодЦена
Added to Basal Medium to create Growth Medium 135-GS 6301.15 руб. 5 ml (3 parts)



Параметры

Tissue:
Human normal neonatal foreskin. Each lot is tested negative for HIV, Hepatitis B, Hepatitis C, mycoplasma, bacteria, and fungi.
Cryopreserved ampoule:
2nd passage, >500,000 cells in Basal Medium containing 30% FBS & 10% DMSO.
Kit contains:
Ampoule of cryopreserved HEM (104-05n), 500 ml Melanocyte Growth Medium (135-500), and a Subculture Reagent Kit (090K).
Proliferating Cells:
Shipped in Growth Medium at 3rd passage in either flasks or multiwell dishes.
Population doublings:
Can be cultured at least 12 doublings

Документы

Публикации


2015
Wiersma, V., M. Bruyn, C. Shi, M. Gooden, M. Wouters, D. Samplonius, D. Hendriks, H. Nijman, Y. Wei, J. Zhou, W. Helfrich, and E. Bremer. 2015. C-type lectin-like molecule-1 (CLL1)-targeted TRAIL augments the tumoricidal activity of granulocytes and potentiates therapeutic antibody-dependent cell-mediated cytotoxicity. mAbs, Vol 7, 11 March.
2013
Becker, T.M., S.C. Boyd, B. Mijatov, K. Gowrishankar, S. Snoyman, G.M. Pupo, R.A. Scolyer, G.J. Mann, R.F. Kefford, X.D. Zhang, and H. Rizos. 2013. Mutant B-RAF-Mcl-1 survival signaling depends on the STAT3 transcription factor. Oncogene. doi: 10.1038/onc.2013.45.
Boyd, S.C., B. Mijatov, G.M. Pupo, S.L. Tran, K. Gowrishankar, H.M. Shaw, C.R. Goding, R.A. Scolyer, G.J. Mann, R.F. Kefford, H. Rizos, and T.M. Becker. 2013. Oncogenic B-RAFV600E Signaling Induces the T-Box3 Transcriptional Repressor to Repress E-Cadherin and Enhance Melanoma Cell Invasion. J Invest Dermatol. 133:1269-1277.
Fung, C., G.M. Pupo, R.A. Scolyer, R.F. Kefford, and H. Rizos. 2013. p16INK4a deficiency promotes DNA hyperreplication and genetic instability in melanocytes. Pigment cell & melanoma research. 26:236-246.
Romeo, Y., J. Moreau, P.J. Zindy, M. Saba-El-Leil, G. Lavoie, F. Dandachi, M. Baptissart, K.L.B. Borden, S. Meloche, and P.P. Roux. 2013. RSK regulates activated BRAF signalling to mTORC1 and promotes melanoma growth. Oncogene. 32:2917-2926.
2012
Barbi de Moura, M., G. Vincent, S.L. Fayewicz, N.W. Bateman, B.L. Hood, M. Sun, J. Suhan, S. Duensing, Y. Yin, C. Sander, J.M. Kirkwood, D. Becker, T.P. Conrads, B. Van Houten, and S.J. Moschos. 2012. Mitochondrial Respiration - An Important Therapeutic Target in Melanoma. PloS one. 7:e40690.
Ho, J., M.B. de Moura, Y. Lin, G. Vincent, S. Thorne, L.M. Duncan, L. Hui-Min, J.M. Kirkwood, D. Becker, and B. Van Houten. 2012. Importance of glycolysis and oxidative phosphorylation in advanced melanoma. Molecular cancer. 11:76.
Todd, J., L. Scurr, T. Becker, R. Kefford, and H. Rizos. 2012. The MAPK pathway functions as a redundant survival signal that reinforces the PI3K cascade in c-Kit mutant melanoma. Oncogene. doi: 10.1038/onc.2012.1562.
Tran, S.L., S. Haferkamp, L.L. Scurr, K. Gowrishankar, T.M. Becker, C. Desilva, J.F. Thompson, R.A. Scolyer, R.F. Kefford, and H. Rizos. 2012. Absence of distinguishing senescence traits in human melanocytic nevi. J. Inv. Dermatol. 132:2226-2234.
Villareal, M.O., J. Han, K. Ikuta, and H. Isoda. 2012. Mechanism of Mitf inhibition and morphological differentiation effects of hirsein A on B16 melanoma cells revealed by DNA microarray. Journal of dermatological science. 67:26-36.
Yajima, I., M.Y. Kumasaka, Y. Naito, T. Yoshikawa, H. Takahashi, Y. Funasaka, T. Suzuki, and M. Kato. 2012. Reduced GNG2 expression levels in mouse malignant melanomas and human melanoma cell lines. American J. Cancer Res. 2:322.
2011
Labelle-Côté, M., J. Dusseault, S. Ismaïl, A. Picard-Cloutier, P. Siegel, and L. Larose. 2011. Nck2 promotes human melanoma cell proliferation, migration and invasion in vitro and primary melanoma-derived tumor growth in vivo. BMC cancer. 11:443.
Weber, D., J. Markowitz, F. Carrier, and A. Mackerell. 2011. Inhibitors of the S100-p53 protein-protein interaction and method of inhibiting cancer employing the same. Patent US 8053477 B2.  
2010
Mahmoud, M., A. Hesham, Y. Ahmed, and M. Sayed. 2010. Inhibition of melanogenesis by the extract from Agaricus blazei without affecting iNOS gene expression. World J Microbiol Biotechnol, DOI 10.1007/s11274-010-0387-6.
Ohshima, Y., I Yajima, K. Takeda, M. Lida, M. Kumasaka, Y. Matsumoto, and M. Kato. 2010. c-RET molecule in malignant melanoma from oncogenic RET-carrying transgenic mice and human cell lines. PLoS One 5: e10279.
Scurr, L.L., G.M. Pupo, T.M. Becker, K. Lai, D. Schrama, S. Haferkamp, M. Irvine, R.A. Scolyer, G.J. Mann, and J.C. Becker. 2010. IGFBP7 is not required for B-RAF-induced melanocyte senescence. Cell. 141:717-727.
2008
Silveira, J., M. Pereda, S. Eberlin, G. Dieamant, and L. Di Stasi. 2008. Effects of Coccoloba uvifera L. on UV-stimulated melanocytes. Photodermatology, Photoimmunology & Photomedicine, 24:308-313.
2006
Baron, U., I. Turbachova, A. Hellwag, F. Eckardt, K. Berlin, U. Hoffmüller, P. Gardina, and S. Olek. 2006.  DNA Methylation Analysis as a Tool for Cell Typing. Epigenetics 1:55-60.
2005
Weber, D., J. Markowitz, F. Carrier, and A. MacKerell. 20015. Inhibitors of the S100-p53 protein-protein interaction and method of inhibiting cancer employing the same. Patent Application US 20060004085 A1.
2004
Tanami, H., I. Imoto, A. Hirasawa, Y. Yuki, I. Sonoda, J. Inoue, K. Yasui, A. Misawa-Furihata, Y. Kawakami, and J. Inazawa. 2004. Involvement of overexpressed wild-type BRAF in the growth of malignant melanoma cell lines. Oncogene, 23:8796-8804.

Информация представлена исключительно в ознакомительных целях и ни при каких условиях не является публичной офертой