1. Каталог >
  2. Клеточные линии, штаммы, среды >
  3. Клеточные линии >
  4. Клеточные линии по типам >
  5. Эндотелий: клетки >

Клетки эндотелия аорты человека: HAOEC. Первичные клеточные линии Cell Applications.

Human Aortic Endothelial Cells: HAOEC

Клетки Эндотелия Аорты Человека (HAOEC) предоставляют прекрасную модельную систему для изучения всех аспектов сердечно-сосудистых функций и заболеваний, они использовались в десятках исследовательских публикаций для изучения сопутствующих диабету нарушений, связанных с сердечно-сосудистыми функциями, исследования механизма иммунного ответа и оттрожения трансплантантов, изучения эндотелиальной дисфункции, вызванной загрязнением воздуха, оксидативным стрессом и воспалением, разработке трехмерных эндотелизированных инженерных тканей, а также новых технологий, основанных на новых материалах поверхностей и препаратов, направленных на уменьшение рисков, связанных с сосудистыми имплантами.

Избранные лоты HAOEC были дополнительно тестированы для демонстрации стимуляционно-зависимого ангиогенеза и ключевых для эндотелиальных клеток сигнальных путей (фосфорилирование VEGFR, Akt, MAPK, экспрессия Tie2, eNOS, Axl и Etk/Bmx). Больше информации о тестированных эндотелиальных клетках вы можете найти в разделе Тестированные Эндотелиальные Клетки.

HAOEC от Cell Applications, Inc. использовались для:

(Текст на языке оригинала)
  • Demonstrate that increased glucose flux leads to endothelial dysfunction in diabetes via activating Egr1-mediated proinflammatory and prothrombotic responses
  • Study apoptosis, oxidative stress and inflammation associated with atherosclerosis and demonstrate the beneficial effects of anthocyanin on endothelial cells damaged by exposure to oxidized sterols
  • Demonstrate that upregulation of thioredoxin via AMPK-FOXO3 pathway protects endothelial cells from oxidative stress and may prevent cardiovascular diseases in patients with metabolic syndrome and diabetes and further elucidate the involvement of AMPK cascade in mediating beneficial cardiovascular effects of green tea
  • Test anti-inflammatory and vasodilating properties of a synthetic rutaecarpine derivative
  • Show that glycated albumin, associated with diabetic complications, decreases endothelial miR-146a expression which leads to increased IL-6 production, and that angiotensin protects endothelial cells by preventing miR-146a downregulation
  • Demonstrate that air pollutants can directly affect ZO-1 function leading to increased endothelial permeability, inflammatory cell transmigration and initiation of atherosclerosis
  • Discover the involvement of stress signaling JNK and p38 pathways in pathological suppression of thrombomodulin, a vascular protective molecule, downregulated in many thrombotic and vascular diseases
  • Link uremic toxins (in particular, PAA) in patients with chronic liver disease to increased ROS production and stimulation of TNF-a in endothelial cells leading to atherosclerosis and vascular calcification
  • Demonstrate that in diabetes, advanced glycation end products lead to ROS generation in endothelia via sustained NF-kB activation, contributing to progression of atherosclerosis
  • Discover that CD40 ligand promotes monocyte adhesion to endothelial cells via PKCa, NF-kB and VCAM-1 signaling cascade, explaining the role of CD40L in atherogenesis
  • Show that monocytes activated by endothelial cells, produce CD80 signaling that leads to allogenic immune response, indicating the need for specific therapy to prevent monocyte activation during allograft transplantation
  • Identify tetraspanin CD82 as the recognition sensor responsible for rejection of xenotransplants
  • Develop 3d endothelialized engineered tissues, as well as new technology based on novel material surfaces and drugs (such as paclitaxel, sirolimus, vitamin C, C6-ceramide and 17β-estradiol) to inhibit smooth muscle cell proliferation at the same time allowing endothelial cells adhesion and proliferation in order to reduce risk associated with vascular implants

Кроме того, HAOEC (вместе с клетками эндотелия подключичной, сонной, коронарной и брахиоцефальной артерий от Cell Applications, Inc.) использовались для демонстрации того, что не только кровеносные сосуды из различных тканей весьма различны, они также по-разному взаимодействуют с лейкоцитами при воспалительном ответе. Авторы далее показали, что дифференциальное N-гликозилирование обычно экспрессируемых молекул сосудистой адгезии может отвечать за это различие, как и за молудирование сигналов при покоящихся и активированных условиях воспаления. Это также объясняет, почему специфические сосудистые русла могут быть более или менее восприимчевы к отдельным заболеваниями или стимулам. Важно, что при использовании клеток из различных источников эти результаты не могли бы быть убедительно подтверждены из-за ряда неконтролируемых факторов – таких, как возраст, раса, генетическая вариабельность или образ жизни доноров. Для устранения вариабельности от донора к донору, исследователи воспользовались преимуществами огромного ассортимента  Cell Applications, включая возможность заказать набор эндотелиальных клеток, полученных в разных сосудистых руслах одного донора.

Из-за сложной неоднородности, существующей не только между разными донорами, но также между различными сосудистыми руслами одной особе, представляется целесообразным подтвердить новые данные на партиях первичных клеток, полученных с нескольких разных источников.

Параметры

Tissue:
Normal Human aorta. Each lot is tested negative for HIV, Hepatitis B, Hepatitis C, mycoplasma, bacteria, and fungi. 
Cryopreserved ampoule:
2nd passage, >500,000 cells in Basal Medium containing 10% FBS & 10% DMSO.
Kit contains:
Ampoule of cryopreserved HAOEC (304-05a), 500 ml of Endothelial Cell Growth Medium (211-500), and a Subculture Reagent Kit (090K).
Proliferating Cells:
Shipped in Transfer Medium at 3rd passage in either flasks or multiwell dishes.
Population doublings:
Can be cultured at least 16 doublings


Документы



Публикации

2015
Chang, E., H. Ma, J. Wang, C. Liu, T. Chen, and S Hung. 2015. Multi-lineage differentiation and angiogenesis potentials of pigmented villonodular synovitis derived mesenchymal stem cells - pathological implication. J Orthopaedic Res, DOI: 10.1002/jor.23031.
Li, R., N. Jen, L. Wu, J. Lee, K. Fang, K. Quigley, K. Lee, S. Wang, B. Zhou, L. Vergnes, Y. Chen, Z. Li, K. Reue, D. Ann, and T. Hsiai. 2015. Disturbed Flow Induces Autophagy But Impairs Autophagic Flux to Perturb Mitochondrial Homeostasis. Antioxidants & Redox Signaling, doi:10.1089/ars.2014.5896.
Li, R., N. Jen, L. Wu, J. Lee, K. Fang, K. Quigley, K. Lee, S. Wang, B. Zhou, L. Vergnes, Y. Chen, Z. Li, K. Reue, D. Ann, and T. Hsiai. 2015. Disturbed Flow Induces Autophagy But Impairs Autophagic Flux to Perturb Mitochondrial Homeostasis. Antioxidants & Redox Signaling, doi:10.1089/ars.2014.5896.
2014
Chang, M., C. Tsao, W. Huang, P. Chen, and S. Hung. 2014. Conditioned medium derived from mesenchymal stem cells overexpressing HPV16 E6E7 dramatically improves ischemic limb. Journal of Molecular and Cellular Cardiology, 72:339–349.
Fu, X., X. Huang, P. Li, W. Chen, and M. Xia. 2014. 7-Ketocholesterol inhibits isocitrate dehydrogenase 2 expression and impairs endothelial function via microRNA-144. Free Radical Biology and Medicine, 71:1-15.
Gardner, A., D. Parker, P. Montgomery, D. Sosnowska, A. Casanegra, Z. Ungvari, A. Csiszar, and W. Sonntag. 2014. Gender and racial differences in endothelial oxidative stress and inflammation in patients with symptomatic peripheral artery disease. Journal of Vascular Surgery, 3 April.
Wang, H., Y. Huang, Y. Shih, H. W, C. Peng, and W. Lo. 2014. MicroRNA-146a decreases high glucose/thrombin-induced endothelial inflammation by inhibiting NAPDH oxidase 4 expression. Mediators of Inflammation, Volume 2014, Article ID 379537.
2013
Deshpande, D., D.R. Janero, and M. Amiji. 2013. Engineering of an ω-3 polyunsaturated fatty acid-containing nanoemulsion system for combination C6-ceramide and 17β-estradiol delivery and bioactivity in human vascular endothelial and smooth muscle cells. Nanomedicine: Nanotechnology, Biology and Medicine. 9:885-894.
Kakade, S., and G. Mani. 2013. A comparative study of the effects of vitamin C, sirolimus, and paclitaxel on the growth of endothelial and smooth muscle cells for cardiovascular medical device applications. Drug design, development and therapy. 7:529.
Lamichhane, S., S. Lancaster, E. Thiruppathi, and G. Mani. 2013. Interaction of Endothelial and Smooth Muscle Cells with Cobalt–Chromium Alloy Surfaces Coated with Paclitaxel Deposited Self-Assembled Monolayers. Langmuir. 29:14254-14264.
Lee, C.-M., J.-A. Gu, T.-G. Rau, C.-H. Yang, W.-C. Yang, S.-H. Huang, F.-Y. Lin, C.-M. Lin, and S.-T. Huang. 2013. Low-Cytotoxic Synthetic Bromorutaecarpine Exhibits Anti-Inflammation and Activation of Transient Receptor Potential Vanilloid Type 1 Activities. BioMed Research International. 2013:Article ID 795095.
Morita, M., S. Yano, T. Yamaguchi, and T. Sugimoto. 2013. Advanced glycation end products-induced reactive oxygen species generation is partly through NF-kappa B activation in human aortic endothelial cells. Journal of Diabetes and its Complications. 27:11-15.
Saleh, S.M., R.S. Parhar, R.S. Al-Hejailan, R.H. Bakheet, H.S. Khaleel, H.G. Khalak, A.S. Halees, M.Z. Zaidi, B.F. Meyer, and G.P. Yung. 2013. Identification of the Tetraspanin CD82 as a New Barrier to Xenotransplantation. The Journal of Immunology. 191:2796-2805.
Scott, D.W., M.O. Vallejo, and R.P. Patel. 2013. Heterogenic endothelial responses to inflammation: role for differential N-glycosylation and vascular bed of origin. Journal of the American Heart Association. 2:e000263-e000263.
Vedantham, S., D. Thiagarajan, R. Ananthakrishnan, L. Wang, R. Rosario, Y.S. Zou, I. Goldberg, S.F. Yan, A.M. Schmidt, and R. Ramasamy. 2013. Aldose Reductase drives hyperacetylation of Egr-1 in hyperglycemia and consequent upregulation of proinflammatory and prothrombotic signals. Diabetes:db13-0032.
Wang, H.-J., W.-Y. Lo, and L.-J. Lin. 2013. Angiotensin-(1–7) decreases glycated albumin-induced endothelial interleukin-6 expression via modulation of miR-146a. Biochemical and biophysical research communications. 430:1157-1163.
Whitsett, J., A. Rangel Filho, S. Sethumadhavan, J. Celinska, M. Widlansky, and J. Vasquez-Vivar. 2013. Human endothelial dihydrofolate reductase low activity limits vascular tetrahydrobiopterin recycling. Free Radical Biology and Medicine. 63:143-150.
Wu, Z., G. Zhao, L. Peng, J. Du, S. Wang, Y. Huang, J. Ou, and Z. Jian. 2013. Protein Kinase C beta Mediates CD40 Ligand-Induced Adhesion of Monocytes to Endothelial Cells. PloS one. 8:e72593.
2012
Eid, N. 2012. FSTL-1 SECRETED BY MESENCHYMAL STEM CELLS INCREASES CELL VIABILITY OF HUMAN AORTIC ENDOTHELIAL CELLS UNDER HYPOXIC STRESS.  BA Thesis, Wilkes Honors College of Florida Atlantic University. EC Gr Med, EC Basal Med
Kanie, K., Y. Narita, F. Kuwabara, M. Satake, S. Honda, H. Kaneko, H. Honda, and R. Kato. 2012. Cell-Selective Peptide Distribution in Human Collagen Proteins. Kobunshi Ronbunshu, 69:129-134.
Kanie, K., Y. Narita, Y. Zhao, F. Kuwabara, M. Satake, S. Honda, H. Kaneko, T. Yoshioka, M. Okochi, H. Honda, and R. Kato. 2012. Collagen type IV-specific tripeptides for selective adhesion of endothelial and smooth muscle cells. Biotechnology and Bioengineering. 109:1808-1816.
Sakai, S., H. Inagaki, Y. Liu, T. Matsuyama, T. Kihara, J. Miyake, K. Kawakami, and M. Taya. 2012. Rapidly serum-degradable hydrogel templating fabrication of spherical tissues and curved tubular structures. Biotechnology and Bioengineering. 109:2911-2919.
Wang, H.-J., H.-C. Huang, Y.-C. Chuang, P.-J. Liao, D.-M. Yang, W. Yang, and H. Huang. 2012. Modulation of tissue factor and thrombomodulin expression in human aortic endothelial cells incubated with high glucose. Acta Diabetol. 49:125-130.
Wang, Y., Y. Zhang, X. Wang, Y. Liu, and M. Xia. 2012. Cyanidin-3-O-β-glucoside induces oxysterol efflux from endothelial cells: Role of liver X receptor alpha. Atherosclerosis. 223:299-305.
2011
Wang, H.-J., T.-L. Lu, H. Huang, and H.-C. Huang. 2011. Paclitaxel induces thrombomodulin downregulation in human aortic endothelial cells. Texas Heart Institute Journal. 38:20.
Yew, T.-L., Y.-T. Hung, H.-Y. Li, H.-W. Chen, L.-L. Chen, K.-S. Tsai, S.-H. Chiou, K.-C. Chao, T.-F. Huang, H.-L. Chen, and S.-C. Hung. 2011. Enhancement of Wound Healing by Human Multipotent Stromal Cell Conditioned Medium: The Paracrine Factors and p38 MAPK Activation. Cell Transplantation. 20:693-706.
2010
Gelissen, I.C., S. Cartland, A.J. Brown, C. Sandoval, M. Kim, D.L. Dinnes, Y. Lee, V. Hsieh, K. Gaus, L. Kritharides, and W. Jessup. 2010. Expression and stability of two isoforms of ABCG1 in human vascular cells. Atherosclerosis. 208:75-82.
Hou, X., J. Song, X.-N. Li, L. Zhang, X. Wang, L. Chen, and Y.H. Shen. 2010. Metformin reduces intracellular reactive oxygen species levels by upregulating expression of the antioxidant thioredoxin via the AMPK-FOXO3 pathway. Biochemical and biophysical research communications. 396:199-205.
Li, R., Z. Ning, J. Cui, F. Yu, C. Sioutas, and T. Hsiai. 2010. Diesel exhaust particles modulate vascular endothelial cell permeability: Implication of ZO-1 expression. Toxicology letters. 197:163-168.
Reiter, C.E.N., J.-a. Kim, and M.J. Quon. 2010. Green Tea Polyphenol Epigallocatechin Gallate Reduces Endothelin-1 Expression and Secretion in Vascular Endothelial Cells: Roles for AMP-Activated Protein Kinase, Akt, and FOXO1. Endocrinology. 151:103-114.
Rong, Y., M. Zhang, L. Zhang, X.L. Wang, and Y.H. Shen. 2010. JNK-ATF-2 inhibits thrombomodulin (TM) expression by recruiting histone deacetylase4 (HDAC4) and forming a transcriptional repression complex in the TM promoter. FEBS letters. 584:852-858.
Wang, H.-J., W.-Y. Lo, T.-L. Lu, and H. Huang. 2010. (−)-Epigallocatechin-3-gallate decreases thrombin/paclitaxel-induced endothelial tissue factor expression via the inhibition of c-Jun terminal NH2 kinase phosphorylation. Biochemical and biophysical research communications. 391:716-721.
Wang, W. 2010. A Novel Role of HDAC5 in Flow-Induced Gene Expression. PhD Dissertation, U Rochester.
2009
Brito, L. 2009. Targeted endothelial nitric oxide synthase gene delivery with lipopolyplexes for the treatment of coronary restenosis. ProQuest.
Hampson, A. 2009. Transcriptional Regulation of Soluble Guanylyl Cyclase. B.Sc. honors thesis, Dublin Institute of Technology.
Husband, A., M. James, and N. Kumar. 2009. 6-substituted isoflavonoid compounds and uses thereof. Patent Application US 20120003270 A1.
Li, R., T. Beebe, J. Cui, M. Rouhanizadeh, L. Ai, P. Wang, M. Gundersen, W. Takabe, and T.K. Hsiai. 2009. Pulsatile shear stress increased mitochondrial membrane potential: Implication of Mn-SOD. Biochemical and biophysical research communications. 388:406-412.
Li, X., Y. Rong, M. Zhang, X.L. Wang, S.A. LeMaire, J.S. Coselli, Y. Zhang, and Y.H. Shen. 2009. Up-regulation of thioredoxin interacting protein (Txnip) by p38 MAPK and FOXO1 contributes to the impaired thioredoxin activity and increased ROS in glucose-treated endothelial cells. Biochemical and biophysical research communications. 381:660-665.
Li, X.-N., J. Song, L. Zhang, S.A. LeMaire, X. Hou, C. Zhang, J.S. Coselli, L. Chen, X.L. Wang, Y. Zhang, and Y.H. Shen. 2009. Activation of the AMPK-FOXO3 Pathway Reduces Fatty Acid–Induced Increase in Intracellular Reactive Oxygen Species by Upregulating Thioredoxin. Diabetes. 58:2246-2257.
Wang, H.-J., H. Huang, Y.-C. Chuang, and H.-C. Huang. 2009. Paclitaxel induces up-regulation of tissue factor in human aortic endothelial cells. International Immunopharmacology. 9:144-147.
2008
Brito, L., S. Little, R. Langer, and M. Amiji. 2008. Poly(β-amino ester) and Cationic Phospholipid-Based Lipopolyplexes for Gene Delivery and Transfection in Human Aortic Endothelial and Smooth Muscle Cells. Biomacromolecules. 9:1179-1187.
Heaton, A., N. Kumar, G. Kelly, and A. Husband. 2008. Compositions and therapeutic methods involving isoflavones and analogues thereof. Patent US 20090233999 A1.
Kim, C.-S., S.-B. Jung, A. Naqvi, T.A. Hoffman, J. DeRicco, T. Yamamori, M.P. Cole, B.-H. Jeon, and K. Irani. 2008. P53 Impairs Endothelium-Dependent Vasomotor Function Through Transcriptional Upregulation of P66shc. Circulation research. 103:1441-1450.
Maghzal, G.J., S.R. Thomas, N.H. Hunt, and R. Stocker. 2008. Cytochrome b5, Not Superoxide Anion Radical, Is a Major Reductant of Indoleamine 2,3-Dioxygenase in Human Cells. Journal of Biological Chemistry. 283:12014-12025.
Wang, H.-J., H.-C. Huang, Y.-C. Chuang, and H. Huang. 2008. Thrombin induces the expression of tissue factor in human aortic endothelial cells. Acta Cardiologica Sinica. 24:151 - 156.
Wang, X., Z. Liu, B. Zhu, P. Wang, C. Wu, and H. Xu. 2008. Molecular Characterization of Hypoxia-Hypothermia–Conditioned Human Endothelial Cells and Their Interaction With Human Monocytes. Transplantation Proceedings, 40:2127-2135.
Yamanaka, M., Y. Anada, Y. Igarashi, and A. Kihara. 2008. A splicing isoform of LPP1, LPP1a, exhibits high phosphatase activity toward FTY720 phosphate. Biochemical and biophysical research communications. 375:675-679.
Zhang, L., Y. Wu, Z. Jia, Y. Zhang, H.Y. Shen, and X. Li Wang. 2008. Protective effects of a compound herbal extract (Tong Xin Luo) on free fatty acid induced endothelial injury: Implications of antioxidant system. BMC complementary and alternative medicine. 8:39.
Zhu, B., Z. Liu, P. Wang, C. Wu, and H. Xu. 2008. A Nuclear Factor-κB Inhibitor BAY11-7082 Inhibits Interactions Between Human Endothelial Cells, T Cells, and Monocytes. Transplantation proceedings. 40:2724-2728.
2007
Hung, S.-C., R.R. Pochampally, S.-C. Chen, S.-C. Hsu, and D.J. Prockop. 2007. Angiogenic Effects of Human Multipotent Stromal Cell Conditioned Medium Activate the PI3K-Akt Pathway in Hypoxic Endothelial Cells to Inhibit Apoptosis, Increase Survival, and Stimulate Angiogenesis. Stem cells. 25:2363-2370.
Oitate, M., T. Hirota, T. Murai, S.-i. Miura, and T. Ikeda. 2007. Covalent Binding of Rofecoxib, but Not Other Cyclooxygenase-2 Inhibitors, to Allysine Aldehyde in Elastin of Human Aorta. Drug Metabolism and Disposition. 35:1846-1852.
Uchiyama, T., H. Atsuta, T. Utsugi, M. Oguri, A. Hasegawa, T. Nakamura, A. Nakai, M. Nakata, I. Maruyama, H. Tomura, F. Okajima, S. Tomono, S. Kawazu, R. Nagai, and M. Kurabayashi. 2007. HSF1 and constitutively active HSF1 improve vascular endothelial function (heat shock proteins improve vascular endothelial function). Atherosclerosis. 190:321-329.
Yamatake, K., M. Maeda, T. Kadowaki, R. Takii, T. Tsukuba, T. Ueno, E. Kominami, S. Yokota, and K. Yamamoto. 2007. Role for Gingipains in Porphyromonas gingivalis Traffic to Phagolysosomes and Survival in Human Aortic Endothelial Cells. Infection and Immunity. 75:2090-2100.
2006
Shen, Y.H., L. Zhang, B. Utama, J. Wang, Y. Gan, X. Wang, J. Wang, L. Chen, G.M. Vercellotti, J.S. Coselli, J.L. Mehta, and X.L. Wang. 2006. Human cytomegalovirus inhibits Akt-mediated eNOS activation through upregulating PTEN (phosphatase and tensin homolog deleted on chromosome 10). Cardiovascular Research. 69:502-511.
Shen, Y.H., L. Zhang, Y. Gan, X. Wang, J. Wang, S.A. LeMaire, J.S. Coselli, and X.L. Wang. 2006. Up-regulation of PTEN (Phosphatase and Tensin Homolog Deleted on Chromosome Ten) Mediates p38 MAPK Stress Signal-induced Inhibition of Insulin Signaling: A CROSS-TALK BETWEEN STRESS SIGNALING AND INSULIN SIGNALING IN RESISTIN-TREATED HUMAN ENDOTHELIAL CELLS. Journal of Biological Chemistry. 281:7727-7736.
Uchiyama, T., H. Atsuta, T. Utsugi, Y. Ohyama, T. Nakamura, A. Nakai, M. Nakata, I. Maruyama, H. Tomura, F. Okajima, S. Tomono, S. Kawazu, R. Nagai, and M. Kurarbayashi. 2006. Simvastatin induces heat shock factor 1 in vascular endothelial cells. Atherosclerosis. 188:265-273.
Wang, J., Y.H. Shen, B. Utama, J. Wang, S.A. LeMaire, J.S. Coselli, G.M. Vercellotti, and X.L. Wang. 2006. HCMV infection attenuates hydrogen peroxide induced endothelial apoptosis – involvement of ERK pathway. FEBS Letters, 580:2779-2787.
Wang, X.L., L. Zhang, K. Youker, M.-X. Zhang, J. Wang, S.A. LeMaire, J.S. Coselli, and Y.H. Shen. 2006. Free Fatty Acids Inhibit Insulin Signaling–Stimulated Endothelial Nitric Oxide Synthase Activation Through Upregulating PTEN or Inhibiting Akt Kinase. Diabetes. 55:2301-2310.
Zhang, W.-Y., E. Schwartz, Y. Wang, J. Attrep, Z. Li, and P. Reaven. 2006. Elevated Concentrations of Nonesterified Fatty Acids Increase Monocyte Expression of CD11b and Adhesion to Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology. 26:514-519.
2005
Nordskog, B.K., W.R. Fields, and G.M. Hellmann. 2005. Kinetic analysis of cytokine response to cigarette smoke condensate by human endothelial and monocytic cells. Toxicology. 212:87-97.
Owing, J. 2005. Smoking and health: new research. Nova Publishers.
Raveendran, M., J. Wang, D. Senthil, J. Wang, B. Utama, Y. Shen, D. Dudley, Y. Zhang, and X.L. Wang. 2005. Endogenous nitric oxide activation protects against cigarette smoking induced apoptosis in endothelial cells. FEBS letters. 579:733-740.
Xu, J., J. Zhou, N. Wang, and H. Xu. 2005. Effects of 4-hydroxy-2-nonenal on cultured human aortic endothelial cells and myocardial cell. Engineering in Medicine and Biology Society, IEEE-EMBS, 27th Intl Conf. 5598-5602, DOI: 10.1109/IEMBS.2005.1615755.
2004
Kenny, T.P., C.L. Keen, P. Jones, H.-J. Kung, H.H. Schmitz, and M.E. Gershwin. 2004. Cocoa procyanidins inhibit proliferation and angiogenic signals in human dermal microvascular endothelial cells following stimulation by low-level H2O2. Experimental biology and medicine. 229:765-771.
Nordskog, B., A. Blixt, A. Zieske, and G. Hellmann. 2004. MMP-1 polymorphic expression in aortic endothelial cells. Cardiovasc Toxicol. 4:75-83.
Raveendran, M., D. Senthil, B. Utama, Y. Shen, D. Dudley, J. Wang, Y. Zhang, and X.L. Wang. 2004. Cigarette suppresses the expression of P4Hα and vascular collagen production. Biochemical and biophysical research communications. 323:592-598.
Ryu, J.-W., K.H. Hong, J.H. Maeng, J.-B. Kim, J. Ko, J.Y. Park, K.-U. Lee, M.K. Hong, S.W. Park, Y.H. Kim, and K.H. Han. 2004. Overexpression of Uncoupling Protein 2 in THP1 Monocytes Inhibits β2 Integrin-Mediated Firm Adhesion and Transendothelial Migration. Arteriosclerosis, Thrombosis, and Vascular Biology. 24:864-870. 
Shen, Y.H., B. Utama, J. Wang, M. Raveendran, D. Senthil, W.J. Waldman, J.D. Belcher, G. Vercellotti, D. Martin, B.M. Mitchelle, and X.L. Wang. 2004. Human Cytomegalovirus Causes Endothelial Injury Through the Ataxia Telangiectasia Mutant and p53 DNA Damage Signaling Pathways. Circulation research. 94:1310-1317.
2001
Barbosa, M., H. Brady, K. Chan, and J. Pardinas. 2001. Monitor therapeutic activity of estrogen modulator; obtain vascular endothelial cell, incubate with modulator, monitor expression of estrogen marker, presence of estrogen marker indicates modulator of cardiovascular activity. Patent Application US 20030054332 A1.



НазваниеКодЦена
For general cryopreservation of most primary cells. Contains FBS & DMSO. 040-50 6228.74 руб.



НазваниеКодЦена
HOAEC Total Kit: Media, Subculture Reagents & Cells, Pre-Screened, Adult S304K-05a 110747.64 руб.



НазваниеКодЦена
Cryopreserved HAOEC 304-05a 80849.28 руб.
HAOEC Total Kit: Media, Subculture Reagents & Cells, Adult 304K-05a 98165.83 руб.



НазваниеКодЦена
Cryopreserved HAOEC S304-05a 93431.77 руб.



НазваниеКодЦена
Cryopreserved HAOEC from donor with Type 2 Diabetes 304T2D-05a 89071.38 руб.



НазваниеКодЦена
HAOEC-T2D Total Kit: Media, Subculture Reagents & Cells, from donor with Type 2 Diabetes, Adult 304T2DK-05a 106387.25 руб.



НазваниеКодЦена
25 x 24-Well Rxns TF101KS 6222.62 руб.
250 x 24-Well Rxns TF101K 49829.91 руб.



НазваниеКодЦена
Basal medium (contains no growth supplement).В  Add GS before use. 210-500 8097.09 руб.
Basal medium without growth supplement and phenol red 210PR-500 8720.1 руб.



НазваниеКодЦена
Basal medium & growth supplement sold together packaged separately 211K-500 14326.51 руб.



НазваниеКодЦена
Starvation medium without phenol red 209PR-250 9093.77 руб.
Use when cells need to be starved overnight to 24 hrs before experiment 209-250 8097.09 руб.



НазваниеКодЦена
Total RNA prepared from human heart tissue 1H30-50 16039.28 руб.
Total RNA prepared from human heart tissue 1H30-250 60419.04 руб.



НазваниеКодЦена
Proliferating HAOEC 305-25a 80849.28 руб.
Proliferating HAOEC 305-75a 104518.9 руб.
Proliferating HAOEC 305-6Wa 104518.9 руб.
Proliferating HAOEC 305-96Wa 119467.73 руб.



НазваниеКодЦена
Proliferating HAOEC S305-6wa 117100.7 руб.
Proliferating HAOEC S305-25a 93431.77 руб.
Proliferating HAOEC S305-75a 117100.7 руб.
Proliferating HAOEC S305-96wa 132050.22 руб.



НазваниеКодЦена
100 ml each of HBSS, Trypsin/EDTA & Trypsin Neutralizing Solution 090K 6353.07 руб.



Extended Family Products

НазваниеКодЦена
100 tests 028-S 4152.49 руб.
500 tests 028-01 16070.53 руб.



НазваниеКодЦена
Total RNA prepared from Human Aortic Endothelial Cells, adult 304-R25a 80974.29 руб.
Total RNA prepared from Human Aortic Endothelial Cells, adult 304-R10a 40486.8 руб.



Related Products

НазваниеКодЦена
Defined medium without serum 113-500 13080.49 руб.
Defined medium without serum and phenol red 113PR-500 13703.5 руб.



НазваниеКодЦена
All-in-one ready-to-use 211-500 12208.14 руб.
Growth medium without antibiotics 211A-500 13080.49 руб.
Growth medium without FBS 211F-500 13080.49 руб.
Growth medium without hydrocortisone 211H-500 13080.49 руб.
Growth medium without phenol red 211PR-500 13080.49 руб.



НазваниеКодЦена
Added to Basal Medium to create Growth Medium 211-GS 6602.41 руб.
Growth supplement without antibiotics 211A-GS 7848.43 руб.
Growth supplement without FBS 211F-GS 8097.09 руб.
Growth supplement without hydrocortisone 211H-GS 7848.43 руб.




Информация представлена исключительно в ознакомительных целях и ни при каких условиях не является публичной офертой