1. Каталог >
  2. Cell Applications >
  3. Клеточные линии >
  4. По типам клеток (клеточные линии) >
  5. Эндотелий: клетки >

Клетки эндотелия капилляров кожи человека: CADMEC/HMVEC. Первичные клеточные линии Cell Applications.

Human Dermal Microvascular Endothelial Cells: CADMEC/HMVEC

Клетки Эндотелия Капилляров Кожи (CADMEC/HMVEC) от Cell Applications, Inc. обеспечивают прекрасную модельную систему для изучения многих аспектов эндотелиальных функций и заболеваний, особенно связанных с микрососудистой и капиллярной системами. Эти клетки были торговой маркой Cell Applications, Inc. более 20 лет назад, когда они были впервые предложены, и CADMEC™ означало “Cell Applications’ Dermal Microvascular Endothelial Cells”. Было показано, что HMVEC/CADMEC экспрессируют vWF, CD36 и CD31, способны поглощать DiI-Ac-LDL и являются положительными на функциональную активность при цитокин-стимулированной адгезии лейкоцитов.

Избранные лоты HMVEC были дополнительно тестированы для демонстрации стимуляционно-зависимого ангиогенеза и ключевых для эндотелиальных клеток сигнальных путей (фосфорилирование VEGFR, Akt, MAPK, и экспрессию Tie2, eNOS, Axl и Etk/Bmx). Более подробную информацию смотрите в разделе Тестированные Эндотелиальные Клетки.

CADMEC/HMVEC от Cell Applications, Inc. были использованы во многих исследованиях, например:

(Текст на языке оригинала)
  • Show that cytokine-activated microvascular endothelial cells upregulate expression of α2-6-linked sialic acids which are the ligands for CD22 on the surface of the B cells, increasing the adhesion between the two cell types
  • Show that IL-1, TNF and IFN stimulated ICAM-1 and E-selectin production by microvascular endothelial cells and resulted in a higher leukocyte adhesion that could be prevented by dexamethasone
  • Demonstrate that FGF-2, but not FGF-13, induces proliferation of microvascular endothelial cells, and that neither growth factor affected IL-6 production
  • Map VEGF signaling pathway by demonstrating that c-Src phosphorylates VEGFR-2 and IQGAP1, leading to activation of b-Raf, causing endotheial cell proliferation and angiogenesis
  • Demonstrate that mechanical signals promote endothelial cell proliferation via VEGFR2/Akt signaling cascade leading to inactivation of GSK3β and preventing cyclin D1 degradation
  • Show that endothelial permeability caused by advanced glycation end products results from RhoA/ROCK and p38 dependent moesin phosphorylation leading to actin reorganization
  • Demonstrate, along with Human Coronary Artery Endothelial Cells, also от Cell Applications, Inc., the role of AMP-activated protein kinase (AMPK) in preservation of the tight junctions, explaining the heightened vascular permeability when AMPK is inhibited due to exposure to lipopolysaccharides during sepsis
  • Demonstrate that the endothelial to mesenchymal transition associated with portal venous stenosis is mediated by increased serum levels of TGF-b1 in idiopathic portal hypertension patients, which induced fibroblast-like morphology, reduction of CD34 expression, and induction of α-smooth muscle actin, COL1A1 and phospho-Smad2, and that BMP-7 was able to prevent these changes (Kitao, 2009);
  • Reveal a critical role for the α7 nAChR in mediating the effects of nicotine on the endothelium
  • Show that abnormal matrix composition characteristic for systemic sclerosis, leads to reduced proliferation, reduced NO-to-O2- ratio, increased apoptosis, and altered protein expression associated with endothelial to mesenchymal transition, all leading to impaired vascular function and angiogenesis
  • Develop anti-tumor apoptosis-inducing peptides that selectively target angiogenic cells and a targeted gene delivery system, PEI-g-PEG-RGD, for efficient expression of soluble fragment of VEGF receptor Flt-1 (sFlt-1) gene in order to inhibit tumor-related angiogenesis
  • Identify a novel tumor-derived angiogenic factor, gastrin-releasing peptide, and its small molecule inhibitor, 77427
  • Evaluate, along with Human Pulmonary Artery Endothelial Cells (HPAEC) and Human Umbilical Cord Vascular Endothelial Cells (HUVEC), all obtained от Cell Applications, Inc., the cytotoxic effects of a novel pore-forming protein, proposed as an anti-tumor agent
  • To confirm the antioxidant and anti-inflammatory effects of blueberry and cranberry anthocyanins and hydroxycinnamic acids against H2O2 and TNFα induced damage to microvascular endothelial cells, by demonstrating reduction in oxidative stress and lowered production of IL-8, MCP-1 and ICAM-1 and show that procyanidins isolated from cocoa inhibit the expression of ErbB2 gene, decreasing cell proliferation and angiogenesis (Kenny, 2004);
  • Demonstrate secretion of adipogenic factor(s) by microvascular endothelial cells
НазваниеКодЦена
CADMEC Total Kit: Media, Subculture Reagents & Cells, Adult 100K-05a 87028.25 руб. 1 Kit
CADMEC Total Kit: Media, Subculture Reagents & Cells, Neonatal 100K-05n 85839.73 руб. 1 Kit



НазваниеКодЦена
CADMEC Total Kit: Media, Subculture Reagents & Cells, Pre-Screened, Adult S100K-05a 103078.74 руб. 1 Kit
CADMEC Total Kit: Media, Subculture Reagents & Cells, Pre-Screened, Neonatal S100K-05n 100701.06 руб. 1 Kit



НазваниеКодЦена
Cryopreserved CADMEC 100-05a 64201.33 руб. 1 Ampoule



НазваниеКодЦена
Cryopreserved CADMEC/HMVEC S100-05a 80251.82 руб. 1 Ampoule



НазваниеКодЦена
Cryopreserved Ampoule 100-05n 63012.16 руб. 1 Ampoule



НазваниеКодЦена
Cryopreserved CADMEC S100-05n 77874.14 руб. 1 Ampoule



НазваниеКодЦена
Proliferating CADMEC 101-25a 64201.33 руб. T-25 Flask
Proliferating CADMEC 101-75a 86790.93 руб. T-75 Flask
Proliferating CADMEC 101-6Wa 86790.93 руб. 6 Well
Proliferating CADMEC 101-96Wa 101057.68 руб. 96 Well



НазваниеКодЦена
Proliferating CADMEC S101-96wa 117108.17 руб. 96 Well
Proliferating CADMEC S101-75a 102840.78 руб. T-75 Flask
Proliferating CADMEC S101-6wa 102840.78 руб. 6 Well
Proliferating CADMEC S101-25a 80251.82 руб. T-25 Flask



НазваниеКодЦена
Proliferating CADMEC 101-96Wn 98680 руб. 96 well
Proliferating CADMEC 101-25n 63012.16 руб. T-25 Flask
Proliferating CADMEC 101-75n 84412.6 руб. T-75 Flask
Proliferating CADMEC 101-6Wn 84412.6 руб. 6 well







Extended Family Products

НазваниеКодЦена
Polyclonal Vascular Endothelial Growth Factor Antibody CA1080 33402.97 руб. 100 ul



НазваниеКодЦена
Polyclonal VEGF Receptor 1 Antibody CB3839 36799.94 руб. 100 ul



НазваниеКодЦена
AFS 123-100 2140.37 руб. 100 ml



НазваниеКодЦена
Total RNA prepared from Human Dermal Microvascular Endothelial Cells, adult 100-R10a 38639.45 руб. 10 ug
Total RNA prepared from Human Dermal Microvascular Endothelial Cells, adult 100-R25a 77279.55 руб. 25 ug
Total RNA prepared from Human Dermal Microvascular Endothelial Cells, Stimulated, adult 100S-R10a 45178.57 руб. 10 ug
Total RNA prepared from Human Dermal Microvascular Endothelial Cells, Stimulated, adult 100S-R25a 90357.13 руб. 25 ug
Total RNA prepared from Human Dermal Microvascular Endothelial Cells, Stimulated, neonatal 100S-R10n 45178.57 руб. 10 ug
Total RNA prepared from Human Dermal Microvscular Endothelial Cells, neonatal 100-R10n 38639.45 руб. 10 ug
Total RNA prepared from Human Dermal Microvscular Endothelial Cells, neonatal 100-R25n 77279.55 руб. 25 ug



НазваниеКодЦена
For general cryopreservation of most primary cells. Contains FBS & DMSO. 040-50 5944.53 руб. 50 ml



НазваниеКодЦена
100 tests 028-S 3963.02 руб. Sample
500 tests 028-01 15337.25 руб. 1 bottle



НазваниеКодЦена
25 x 24-Well Rxns TF101KS 5938.7 руб. 1 Sample Kit
250 x 24-Well Rxns TF101K 47556.25 руб. 1 Kit



НазваниеКодЦена
100 ml each of HBSS, Trypsin/EDTA & Trypsin Neutralizing Solution 090K 6063.19 руб. 100 ml



НазваниеКодЦена
Human Vascular Endothelial Growth Factor-121 RP1116-10 21400.44 руб. 10 ug
Human Vascular Endothelial Growth Factor-121 RP1116-100 53501.43 руб. 100 ug
Human Vascular Endothelial Growth Factor-121 RP1116-1000 451786.96 руб. 1000 ug



Related Products

НазваниеКодЦена
Basal medium (contains no growth supplement).В  Add GS before use. 110-500 6301.15 руб. 500 ml
Basal medium without phenol red 110PR-500 8084.9 руб. 500 ml



НазваниеКодЦена
Cord formation medium without serum and growth factors 114-500 12483.65 руб. 500 ml
Cord formation medium without serum, growth factors and phenol red 114PR-500 13078.23 руб. 500 ml



НазваниеКодЦена
All-in-one ready-to-use 112-500 12483.65 руб. 500 ml
Growth medium without FBS 112F-500 13791.47 руб. 500 ml
Growth Medium without phenol red 112PR-500 16882.39 руб. 500 ml
Growth medium without phospate 112P-500 16882.39 руб. 500 ml



НазваниеКодЦена
Basal medium & growth supplement sold together packaged separately 112K-500 13791.47 руб. Yields 500 ml
Growth Medium Kit without phenol red 112KPR-500 18071.56 руб. yields 500 ml



НазваниеКодЦена
Added to Basal Medium to create Growth Medium 112-GS 7490.32 руб. 30 ml



Параметры

Tissue:
Normal human neonatal foreskin or adult skin capillaries.  Each lot is tested negative for HIV, Hepatitis B, Hepatitis C, mycoplasma, bacteria, and fungi. 
Cryopreserved ampoule:
2nd passage, >500,000 cells in Cell Basal Medium containing 10% FBS & 10% DMSO.
Kit contains:
Each kit contains an ampoule of cryopreserved CADMEC (100-05), 500 ml of CADMEC Cell Growth Medium (112-500), a Subculture Reagent Kit, two Extracellular Matrix Attachment Factor Coated T-25 Flasks (121-25-02), 100 ml of Attachment Factor Solution (123-100).
Proliferating Cells:
Shipped in Endothelial Cell Transfer Media at 3rd passage in either flasks or multiwell dishes.
Population doublings:
Can be cultured at least 16 doublings

Документы

Публикации

 

2013
Castanares-Zapatero, D., C. Bouleti, C. Sommereyns, B. Gerber, C. Lecut, T. Mathivet, M. Horckmans, D. Communi, M. Foretz, J.L. Vanoverschelde, S. Germain, L. Bertrand, P.F. Laterre, C. Oury, B. Viollet, S. Horman, and C. Beauloye. 2013. Connection Between Cardiac Vascular Permeability, Myocardial Edema, and Inflammation During Sepsis: Role of the alpha1AMP-Activated Protein Kinase Isoform. Crit Care Med. 10.1097/CCM.0b013e31829866dc
2012
Abe, H., and S. Tajima. 2012. UVB irradiation downregulates type XVI collagen expression in mouse and human skin. Journal of Cosmetic Dermatology. 11:169-178.
Sato, Y., X. Ren, K. Harada, M. Sasaki, H. Morikawa, S. Shiomi, M. Honda, S. Kaneko, and Y. Nakanuma. 2012. Induction of elastin expression in vascular endothelial cells relates to hepatoportal sclerosis in idiopathic portal hypertension: possible link to serum antiendothelial cell antibodies. Clinical & Experimental Immunology. 167:532-542.
Wang, J., H. Liu, B. Chen, Q. Li, X. Huang, L. Wang, X. Guo, and Q. Huang. 2012. RhoA/ROCK-dependent moesin phosphorylation regulates AGE-induced endothelial cellular response. Cardiovascular Diabetology. 11:7.
2011
Cuttitta, F., A. Martinez, and W. Stetler-Stevenson. 2011. Methods for inhibiting angiogenesis with inhibitors of proadrenomedullin N-terminal 20 peptide (PAMP). Patent US 7862815 B2.
2010
Harris, L.J., P. Zhang, H. Abdollahi, N.A. Tarola, C. DiMatteo, S.E. McIlhenny, T.N. Tulenko, and P.J. DiMuzio. 2010. Availability of Adipose-Derived Stem Cells in Patients Undergoing Vascular Surgical Procedures. J. Surgical Research. 163:e105-e112.
Liu, J., and S. Agarwal. 2010. Mechanical signals activate vascular endothelial growth factor receptor-2 to upregulate endothelial cell proliferation during inflammation. The Journal of Immunology. 185:1215-1221.
2009
Fischer, L.J., S. McIlhenny, T. Tulenko, N. Golesorkhi, P. Zhang, R. Larson, J. Lombardi, I. Shapiro, and P.J. DiMuzio. 2009. Endothelial Differentiation of Adipose-Derived Stem Cells: Effects of Endothelial Cell Growth Supplement and Shear Force. Journal of Surgical Research. 152:157-166.
Guo, X., L. Wang, B. Chen, Q. Li, J. Wang, M. Zhao, W. Wu, P. Zhu, X. Huang, and Q. Huang. 2009. ERM protein moesin is phosphorylated by advanced glycation end products and modulates endothelial permeability. American Journal of Physiology-Heart and Circulatory Physiology. 297:H238-H246.
Gupta, A., C. Lobocki, S. Singh, M. Robertson, O.A. Akadiri, G. Malhotra, and I.T. Jackson. 2009. Actions and Comparative Efficacy of Phosphatidylcholine Formulation and Isolated Sodium Deoxycholate for Different Cell Types. Aesth Plast Surg. 33:346-352.
Kitao, A., Y. Sato, S. Sawada-Kitamura, K. Harada, M. Sasaki, H. Morikawa, S. Shiomi, M. Honda, O. Matsui, and Y. Nakanuma. 2009. Endothelial to mesenchymal transition via transforming growth factor-β1/Smad activation is associated with portal venous stenosis in idiopathic portal hypertension. The American journal of pathology. 175:616-626.
Wu, J.C., A. Chruscinski, V.A. De Jesus Perez, H. Singh, M. Pitsiouni, M. Rabinovitch, P.J. Utz, and J.P. Cooke. 2009. Cholinergic modulation of angiogenesis: role of the 7 nicotinic acetylcholine receptor. Journal of cellular biochemistry. 108:433-446.
2008
Cuttittta, F., A. Martinez, and W. Stetler-Stevenson. 2008. Compositions and methods for promoting angiogenesis. Patent US 7462593 B2.
Hu, J., C. Rosen, and L. Cao. 2008. Vascular endothelial growth factor 2. Patent US 7439333 B2.
Meyer, R.D., D.B. Sacks, and N. Rahimi. 2008. IQGAP1-dependent signaling pathway regulates endothelial cell proliferation and angiogenesis. PloS one. 3:e3848.
2007
Coman, T. Comprises nucleotide sequences associated with expression vector coding endothelial growth factor for use in diagnosis and treatment of tumor angiogenesis, inflammation, diabetic retinopathy, arthritis and psoriasis; wound healing agent. Patent US 7273751 B2.
Hu, J., C. Rosen, and L. Cao. 2007. Methods of stimulating angiogenesis in a patient by administering vascular endothelial growth factor 2. Patent US 7186688 B1.
Igarashi, K., I. Sakimoto, K. Kataoka, K. Ohta, and M. Miura. 2007. Radiation-induced senescence-like phenotype in proliferating and plateau-phase vascular endothelial cells. Experimental cell research. 313:3326-3336.
2006
Fujiuchi, S., Y. Yamazaki, Y. Fujita, Y. Nishigaki, A. Taked, Y. Yamamoto, T. Fijikane, T. Shimizu, S. Osanai, T. Takahashi, and K. Kikuchi. 2006. S-Nitrosoglutathione (SNOG) Accumulates Hypoxia Inducible Factor-1α in Main Pulmonary Artery Endothelial Cells but not in Micro Pulmonary Vessel Endothelial Cells. In THE ARTERIAL CHEMORECEPTORS. Vol. 580. Y. Hayashida, C. Gonzalez, and H. Kondo, editors. Springer US. 63-71.
Hu, J., C. Rosen, and L. Cao. 2006. Polypeptide for use in the treatment of inflammation, rheumatoid arritis, psoriasis, and diabetic retinopathy. Patent US 7153942 B2.
Li, H., M. Adams, V. Calenda, and V. Fataccioli. 2006. Stimulating angiogenesis enhancing the repair of connective and support tissue, promoting the attachment, fixation and stabilization of tissue implants and enhancing wound healing. Patent US 7026299 B2.
2005
Hu, C. Rosen, and L. Cao. 2005. Administering anti-Flt4 antibody or an anti-VEGF-C antibody that inhibits binding between Flt4 ligand protein and Flt4 expressed in cells to treat breast cancer characterized by endothelial cells that express Flt4 tyrosine kinase. Patent Application US 20060025331 A1.
Hu, J., C. Rosen, and L. Cao. 2005. Produced by recombinant techniques and polynucleotides encoding the polypeptides; used to stimulate angiogenesis for wound healing and for vascular tissue repair. Patent Application US 20050176103 A1.
Ji, H., P.A. Abshire, M. Urdaneta, and E. Smela. 2005. CMOS contact imager for monitoring cultured cells. In Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on. IEEE. 3491-3494.
Kim, W.J., J.W. Yockman, M. Lee, J.H. Jeong, Y.-H. Kim, and S.W. Kim. 2005. Soluble Flt-1 gene delivery using PEI-g-PEG-RGD conjugate for anti-angiogenesis. Journal of controlled release. 106:224-234.
Li, H., M. Adams, V. Calenda, and V. Fataccioli. 2005. Connective tissue growth factor-2. Patent Application US 20060052328 A1.
Martinez, A., E. Zudaire, M. Julian, T.W. Moody, and F. Cuttitta. 2005. Gastrin-releasing peptide (GRP) induces angiogenesis and the specific GRP blocker 77427 inhibits tumor growth in vitro and in vivo. Oncogene. 24:4106-4113.
2004
Hu, J., L. Cao, and A. Rosen. 20045. Nucleotide sequences coding polypeptide for use in the diagnosis, prevention and treatment of cancer, inflammation, diabetic retinopathy, rheumatoid arthritis and psoriasis. Patent US 6734285 B2.
Kenny, T.P., C.L. Keen, P. Jones, H.-J. Kung, H.H. Schmitz, and M.E. Gershwin. 2004. Cocoa procyanidins inhibit proliferation and angiogenic signals in human dermal microvascular endothelial cells following stimulation by low-level H2O2. Experimental biology and medicine. 229:765-771.
2003
Duan, D., and S. Rosen. 2003. Bone marrow specific protein. Patent Application US 20030191062 A1.
Ellerby, H.M., S. Lee, L.M. Ellerby, S. Chen, T. Kiyota, G. del Rio, G. Sugihara, Y. Sun, D.E. Bredesen, W. Arap, and R. Pasqualini. 2003. An Artificially Designed Pore-forming Protein with Anti-tumor Effects. Journal of Biological Chemistry. 278:35311-35316.
Hu, J., L. Cao, and C. Rosen. 2003. Comprises nucleotide sequences coding mitogens for treating psoriasis, vision defects, tumors and arthritis. Patent Application US 20040143103 A1.
2001
Li, H., M. Adams, V. Calenda, and V. Fataccioli. 2001. Connective tissue growth factor-2. Patent Application US 20030012768 A1.
Coleman, T. 2001. Vascular endothelial growth factor-2. Patent Application US 20030215921 A1.
Hutley, L.J., A.C. Herington, W. Shurety, C. Cheung, D.A. Vesey, D.P. Cameron, and J.B. Prins. 2001. Human adipose tissue endothelial cells promote preadipocyte proliferation. American Journal of Physiology-Endocrinology And Metabolism. 281:E1037-E1044.
Patel, N.A., J.A. Patel, M.F. Stins, K.S. Kim, and S.L. Chang. 2001. Dexamethasone Affects Cytokine-Mediated Adhesion of HL-60 Human Promyelocytic Leukemia Cells to Cultured Dermal Microvascular Endothelial Cells. Clinical Immunology. 99:387-394.
Ruoslahti, E., R. Pasqualini, W. Arap, B. Dale, and E. Michael. 2001. Chimeric prostate-homing peptide comprising a sequence of serine-methionine-serine-isoleucine-alanine-arganine-leucine, or functionally equivalent sequence. Patent Application US 20010046498 A1.
2000
Hu, J., C. Rosen, and L. Cao. 2000. Amino acid sequence; for angiogenesis inhibitors, antitumor agents, antiinflammatory agents, antiarthritic agents for rheumatoid arthritis, wound healing agents; treatment of diabetic retinopathy and psoriasis. Patent US 6040157 A.
1998
Leung, K.H., V. Pippalla, A. Kreutter, and M. Chandler. 1998. Functional effects of FGF-13 on human lung fibroblasts, dermal microvascular endothelial cells, and aortic smooth muscle cells. Biochem. & Biophys. Research Communic. 250:137-142.
1997
Chang, C., Y. Lee, J. Yang, C. Weng, and F. Wei. 1997. Pilot in Vitro Toxicity Study of 5-ALA and Photofrin® in Microvascular Endothelial Cell Cultures. J Clinical Laser Med & Surg, 15:83-87.
1996
DERYUGINA, E.I., A. STRONGIN, C. YU, and M.A. BOURDON. 1996. A novel monoclonal antibody, L1A3, is directed to the functional site of the αv integrin subunit. Hybridoma. 15:279-288.
1995
Hanasaki, K., A. Varki, and L.D. Powell. 1995. CD22-mediated Cell Adhesion to Cytokine-activated Human Endothelial Cells POSITIVE AND NEGATIVE REGULATION BY α2-6-SIALYLATION OF CELLULAR GLYCOPROTEINS. J.  Biol. Chem. 270:7533-7542.
 


Информация представлена исключительно в ознакомительных целях и ни при каких условиях не является публичной офертой