1. Каталог >
  2. Клеточные линии, штаммы, среды >
  3. Клеточные линии >
  4. Клеточные линии по тканям >
  5. Дыхательные пути: клетки >

Клетки эндотелия легочной артерии быка: BPAEC. Первичные клеточные линии Cell Applications.

Bovine Pulmonary Artery Endothelial Cells: BPAEC

Клетки Эндотелия Легочной Артерии Быка (BPAEC) от Cell Applications, Inc. предоставляют прекрасную модельную систему для изучения многих аспектов эпителиальных функций и заболеваний. Например, они были использованы для исследования важнейших сигнальных путей и механизмов, связанных с правильным функционированием эндотелия, таких как ангиогенез, проницаемость, продуцирование  оксида азота. Также BPAEC использовались для поиска полезных модуляторав для терапевтического использования, исследования связанных с диабетом нарушений сердечно-сосудистых функций, изучения механизмов дисфункции эндотелия, связанной с загрузнением окружающей среды, курением, оксидативным стрессом, воспалительными процессами, поисков возможных методов лечения и разработки совместного слоистого культивирования клеток печени и эндотелия для демонстрации специфических особенностей клеток печени.

BPAEC от Cell Applications, Inc. были использованы во многих исследованиях, например:

(Текст на языке оригинала)
  • Determine that induction of cellular antioxidant glutathione during moderate oxidative stress involves ARE-binding factors in a MAP kinase independent mechanism
  • Show that HGF transiently increases transcription of angiotensin-converting enzyme gene via activation of Egr-1, whereas PMA regulation involves Egr-1 and additional factors
  • Elucidate the therapeutic effects of Angiotensin I-converting enzyme (ACE) inhibitors, and the results revealed that they provide an additional benefit to patients by activating bradykinin B1 receptor leading to prolonged nitric oxide (NO) production in endothelial cells
  • Demonstrate that thiol-reactive compounds in cigarette smoke activate NADPH oxidase and increase superoxide anion production, reducing NO levels and resulting in endothelial dysfunction
  • Reveal that mercury, a risk factor for cardiovascular diseases, induces PLA2 activation in endothelial cells, followed by PLD activation, and the process is mediated by thiol-redox alteration, ROS and Ca2+/calmodulin
  • Demonstrate that adiponectin protects against the hyperoxia-induced endothelial barrier dysfunction and lung damage by relieving oxidative stress and normalizing thiol-redox status
  • Show that TGF-β1–induced endothelial permeability involves focal adhesion and cytoskeletal rearrangement through both FAK/Src-dependent and -independent pathways
  • Demonstrate that exposure to lipopolysaccharides inhibits AMPK (which is required for normal endothelial barrier function) and causes endothelial hyperpermeability and lung injury
  • Demonstrate the effectiveness of myosin light chain kinase inhibitors in decreasing endothelial hyperpermeability
  • Show that angiotensin II-induced apoptosis relies on activation of AMPK for ATP production, as well as for activation of SHP-2 in a signaling cascade leading to Bcl-x(L) mRNA destabilization
  • Evaluate therapeutic potential of aminoguanidine in protecting endothelia from hyperglycemic complications in diabetes by blocking the reactivity of the sugar-derived dicarbonyls and preventing the formation of advanced glycation end products
  • Demonstrate the roles of Egr-1, ATF-2 and Ets-1 in the regulation of angiotensin converting enzyme promoter by phorbol ester
  • Develop a therapeutic peptide based on a fragment of Listeria monocytogenes internalin B that prevented angiotensin II-induced apoptosis and stimulated proliferation and cell motility by activating ERK1/2, STAT3, and phosphatidylinositol 3-kinase/Akt pathways
  • Develop layered co-cultures of liver and endothelial cells that demonstrate superior liver-specific features

Параметры

Tissue:
Pulmonary artery of USDA-inspected cattle.  Each lot is tested negative for mycoplasma, bacteria, and fungi.
Cryopreserved ampoule:
2nd passage, >500,000 cells in Bovine Endothelial Cell Growth Medium containing 10% FBS & 10% DMSO.
Kit contains:
Ampoule of cryopreserved BPAEC(B302-05), 500 ml Bovine Endothelial Cell Growth Medium (B211-500), and a Subculture Reagent Kit (090K).
Proliferating Cells:
Shipped in Bovine Endothelial Cell Medium at 3rd passage in either flasks or multiwell dishes.
Population doublings:
Can be cultured at least 16 doublings


Документы



Публикации

2013
Sherwani, S., S. Pabon, R. Patel, M. Sayyid, T. Hagele, S. Kotha, U. Magalang, K. Maddipati, and N. Parinandi. 2013. Eicosanoid Signaling and Vascular Dysfunction: Methylmercury-Induced Phospholipase D Activation in Vascular Endothelial Cells. Cell biochemistry and biophysics. 67:317-329.
Sliman, S., R. Patel, J. Cruff, S. Kotha, C. Newland, C. Schrader, S. Sherwani, T. Gurney, U. Magalang, and N. Parinandi. 2013. Adiponectin Protects Against Hyperoxic Lung Injury and Vascular Leak. Cell biochemistry and biophysics. 67:399-414.
Xing, J., Q. Wang, K. Coughlan, B. Viollet, C. Moriasi, and M.-H. Zou. 2013. Inhibition of AMP-Activated Protein Kinase Accentuates Lipopolysaccharide-Induced Lung Endothelial Barrier Dysfunction and Lung Injury in Vivo. The American journal of pathology. 182:1021-1030.
2011
Day, R.M., Y.H. Lee, L. Han, Y.C. Kim, and Y.H. Feng. 2011. Angiotensin II activates AMPK for execution of apoptosis through energy-dependent and -independent mechanisms. American journal of physiology. Lung cellular and molecular physiology. 301:L772-781.
Matsumoto, A., H. Harada, M. Saito, and A. Taniguchi. 2011. Induction of insulin-like growth factor 2 expression in a mesenchymal cell line co-cultured with an ameloblast cell line. In Vitro Cell.Dev.Biol.-Animal. 47:675-680.
2010
Marchenko, A.V., E.O. Stepanova, A.V. Sekridova, M.V. Sidorova, V.N. Bushuev, Z.D. Bespalova, and V.P. Shirinsky. 2010. Novel peptide inhibitors of myosin light chain kinase suppress the hyperpermeability of vascular endothelium. BIOPHYSICS. 55:926-930.
Mungunsukh, O., Y.H. Lee, A.P. Marquez, F. Cecchi, D.P. Bottaro, and R.M. Day. 2010. A tandem repeat of a fragment of Listeria monocytogenes internalin B protein induces cell survival and proliferation. American Journal of Physiology - Lung Cellular and Molecular Physiology. 299:L905-L914.
Sliman, S., T. Eubank, S. Kotha, M.L. Kuppusamy, S. Sherwani, E.C. Butler, P. Kuppusamy, S. Roy, C. Marsh, D. Stern, and N. Parinandi. 2010. Hyperglycemic oxoaldehyde, glyoxal, causes barrier dysfunction, cytoskeletal alterations, and inhibition of angiogenesis in vascular endothelial cells: aminoguanidine protection. Molecular and cellular biochemistry. 333:9-26.
2009
Ohno, M., K. Motojima, T. Okano, and A. Taniguchi. 2009a. Induction of Drug-Metabolizing Enzymes by Phenobarbital in Layered Co-culture of a Human Liver Cell Line and Endothelial Cells. Biological and Pharmaceutical Bulletin. 32:813-817.
Ohno, M., K. Motojima, T. Okano, and A. Taniguchi. 2009b. Maturation of the Extracellular Matrix and Cell Adhesion Molecules in Layered Co-cultures of HepG2 and Endothelial Cells. Journal of biochemistry. 145:591-597.
Peltz, A., S.I. Sherwani, S.R. Kotha, J.N. Mazerik, E.S. O’Connor Butler, M.L. Kuppusamy, T. Hagele, U.J. Magalang, P. Kuppusamy, C.B. Marsh, and N.L. Parinandi. 2009. Calcium and Calmodulin Regulate Mercury-induced Phospholipase D Activation in Vascular Endothelial Cells. International Journal of Toxicology. 28:190-206.
2008
Mungunsukh, O., A.P. Marquez, Y.H. Lee, G. Thiel, and R.M. Day. 2008. Characterization of the bovine angiotensin converting enzyme promoter: Essential roles of Egr-1, ATF-2 and Ets-1 in the regulation by phorbol ester. Gene. 421:81-88.
Ohno, M., K. Motojima, T. Okano, and A. Taniguchi. 2008. Up-regulation of drug-metabolizing enzyme genes in layered co-culture of a human liver cell line and endothelial cells. Tissue Engineering Part A. 14:1861-1869.
2007
Hagele, T.J., J.N. Mazerik, A. Gregory, B. Kaufman, U. Magalang, M.L. Kuppusamy, C.B. Marsh, P. Kuppusamy, and N.L. Parinandi. 2007. Mercury Activates Vascular Endothelial Cell Phospholipase D through Thiols and Oxidative Stress. Int. J. Toxicol. 26:57-69.
Lee, Y.H., U.S. Kayyali, A.M. Sousa, T. Rajan, R.J. Lechleider, and R.M. Day. 2007. Transforming growth factor-β1 effects on endothelial monolayer permeability involve focal adhesion kinase/Src. American journal of respiratory cell and molecular biology. 37:485.
Mazerik, J., H. Mikkilineni., V. Kuppusamy, E. Steinhour, A. Peltz, C. Marsh, P. Kuppusamy, and N. Parinandi. 2007. Mercury Activates Phospholipase A2 and Induces Formation of Arachidonic Acid Metabolites in Vascular Endothelial Cells. Toxicol Mech and Meth, 17:541-557.
Mazerik, J.N., T. Hagele, S. Sherwani, V. Ciapala, S. Butler, M.L. Kuppusamy, M. Hunter, P. Kuppusamy, C.B. Marsh, and N.L. Parinandi. 2007. Phospholipase A2 Activation Regulates Cytotoxicity of Methylmercury in Vascular Endothelial Cells. International Journal of Toxicology. 26:553-569.
Mohammed, K.A., N. Nasreen, R.S. Tepper, and V.B. Antony. 2007. Cyclic stretch induces PlGF expression in bronchial airway epithelial cells via nitric oxide release. American Journal of Physiology. 292:L559-L566.
2006
Hagele, T. 2006. Mercury activates phospholipase D in vascular endothelial cells: Implications for environmental cardiovascular disease. The Ohio State University, Honors Thesis.
2004
Day, R.M., G. Thiel, J. Lum, R.D. Chévere, Y. Yang, J. Stevens, L. Sibert, and B.L. Fanburg. 2004. Hepatocyte Growth Factor Regulates Angiotensin Converting Enzyme Expression. Journal of Biological Chemistry. 279:8792-8801.
Ignjatovic, T., S. Stanisavljevic, V. Brovkovych, R.A. Skidgel, and E.G. Erdos. 2004. Kinin B1 Receptors Stimulate Nitric Oxide Production in Endothelial Cells: Signaling Pathways Activated by Angiotensin I-Converting Enzyme Inhibitors and Peptide Ligands. Molecular Pharmacology. 66:1310-1316. 
Jaimes, E.A., E.G. DeMaster, R.-X. Tian, and L. Raij. 2004. Stable Compounds of Cigarette Smoke Induce Endothelial Superoxide Anion Production via NADPH Oxidase Activation. Arteriosclerosis, Thrombosis, and Vascular Biology. 24:1031-1036.
2003

Chen, H., M. Montagnani, T. Funahashi, I. Shimomura, and M.J. Quon. 2003. Adiponectin Stimulates Production of Nitric Oxide in Vascular Endothelial Cells. Journal of Biological Chemistry. 278:45021-45026.



НазваниеКодЦена
Basal medium (contains no growth supplement).В  Add GS before use. B210-500 6602.41 руб.



НазваниеКодЦена
Basal medium & growth supplement sold together packaged separately B211K-500 13080.49 руб.



НазваниеКодЦена
Added to Basal Medium to create Growth Medium B211-GS 5855.07 руб.



НазваниеКодЦена
Total RNA prepared from Bovine Pulmonary Artery Endothelial Cells B302-R10 40486.8 руб.
Total RNA prepared from Bovine Pulmonary Artery Endothelial Cells B302-R25 80974.29 руб.



НазваниеКодЦена
For general cryopreservation of most primary cells. Contains FBS & DMSO. 040-50 6228.74 руб.



НазваниеКодЦена
Cryopreserved BPAEC B302-05 67893.8 руб.



НазваниеКодЦена
BPAEC Total Kit: Media, Subculture Reagents & Cells B302K-05 85209.67 руб.



НазваниеКодЦена
Proliferating BPAEC B303-6W 85334 руб.
Proliferating BPAEC B303-25 67893.8 руб.
Proliferating BPAEC B303-75 91562.74 руб.
Proliferating BPAEC B303-96W 100283.52 руб.



НазваниеКодЦена
100 ml each of HBSS, Trypsin/EDTA & Trypsin Neutralizing Solution 090K 6353.07 руб.



Related Products

НазваниеКодЦена
All-in-one ready-to-use B211-500 12208.14 руб.



Extended Family Products

НазваниеКодЦена
100 tests 028-S 4152.49 руб.
500 tests 028-01 16070.53 руб.



НазваниеКодЦена
25 x 24-Well Rxns TF101KS 6222.62 руб.
250 x 24-Well Rxns TF101K 49829.91 руб.




Информация представлена исключительно в ознакомительных целях и ни при каких условиях не является публичной офертой